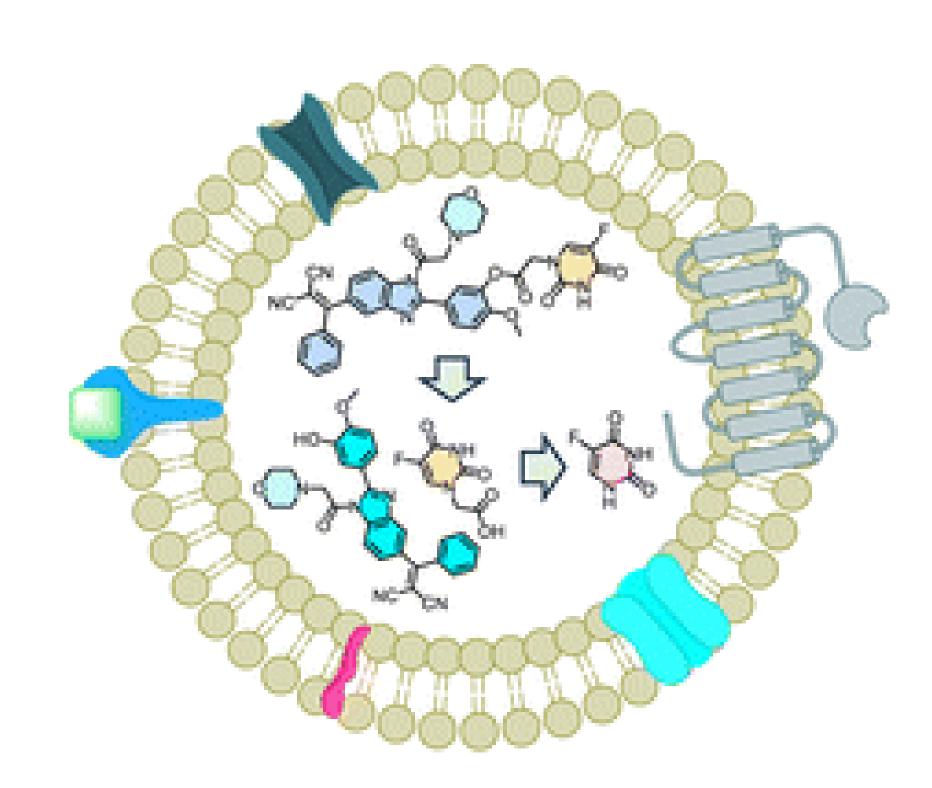

Esterase-induced release of a theranostic prodrug in lysosomes for improved therapeutic efficacy and lower systemic toxicity

Sourav Dutta, Sanchita Tripathy, Somnath Bej, Sabana Parvin, Batakrishna Jana, Chitta Ranjan Patra and Amitava Das

IISER Kolkata; CSIR-IICT Hyderabad; AcSIR Ghaziabad; and Adamas University, Kolkata.


Correspondence: amitava@iiserkol.ac.in; crpatra@iict.res.in; batakrishna.jana1@adamasunivesrity.ac.in

What's the study about?

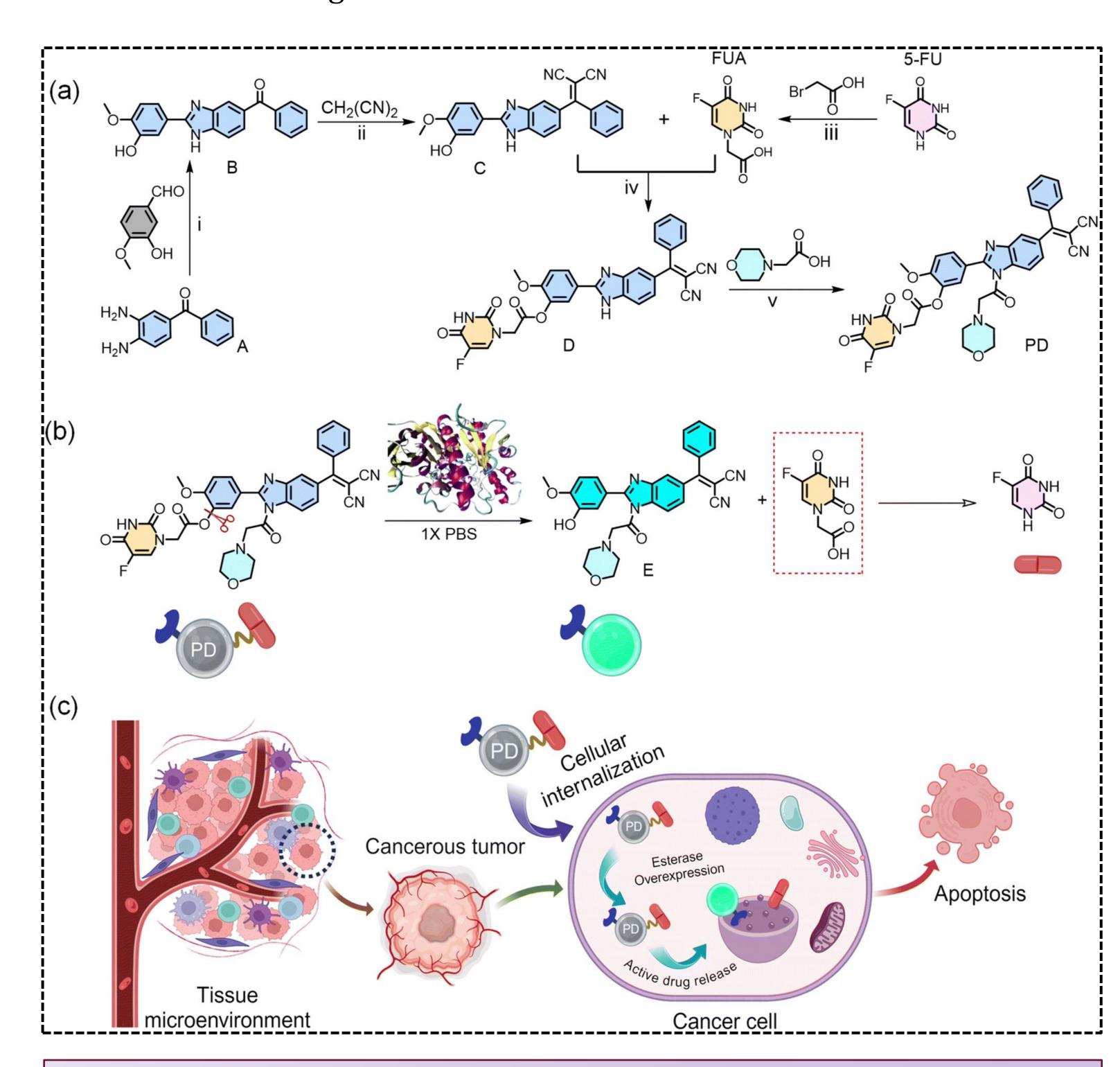
ADAMAS

This work presents a lysosome-targeted theranostic prodrug of 5-fluorouracil (5-FU) that links 5-fluorouracil-1-acetic acid (FUA) to a benzimidazole fluorophore and a morpholine group via an esterase-cleavable ester. The design keeps the conjugate non-fluorescent and less active during circulation, then selectively activates inside lysosomes where intracellular esterases trigger bond cleavage. The aim is to achieve site-specific, sustained release of 5-FU within cancer cells while simultaneously switching on fluorescence to track drug activation—thereby improving efficacy and reducing off-target toxicity.

How was the study conducted?

The team synthesized and fully characterized the prodrug and controls, then quantified esterase-induced cleavage using fluorescence turn-on and RP-HPLC to map release kinetics across pH conditions. Cellular uptake and lysosomal localization were visualized by confocal microscopy. Cytotoxicity was measured in cancer cell lines (e.g., U87 glioblastoma and SKOV-3 ovarian) and compared with a normal CHO cell line. Mechanistic studies used flow cytometry to evaluate cell-cycle effects and apoptosis. Functional relevance was further tested through anti-angiogenic assays on the CAM model and growth inhibition of 3D HeLa spheroids.

Key findings


Esterase exposure converted the "OFF" prodrug to a fluorescent "ON" state, confirming triggerable cleavage and sustained release that approached a plateau around ~6 hours, with faster kinetics under acidic conditions consistent with lysosomes. The prodrug localized to lysosomes and showed greater potency than free 5-FU in cancer cells (e.g., IC₅₀ \approx 20.8 μ M in U87 and \approx 36.9 μ M in SKOV-3 versus \approx 105 μ M and \approx 48 μ M for 5-FU, respectively), while sparing normal CHO cells (\approx 95% viability at 50 μ M). Mechanistically, treatment produced S-phase (\pm G2/M) arrest and both early and late apoptosis. Functionally, the prodrug exerted stronger antiangiogenic effects and significantly reduced 3D spheroid size relative to controls.

Novelty

Lysosome-targeted theranostic 5-FU prodrug with esterase-triggered, sustained release and fluorescence turn-on; dual imaging-plus-therapy in a single construct.

Mechanism

Targeting the lysosome—a metabolic and degradative hub—enables concentrated intracytoplasmic release of 5-FU where it is most effective, which can increase tumor cell kill at lower systemic exposure. Because activation is fluorescence-tracked, clinicians gain a built-in readout of drug engagement, supporting dose optimization and response monitoring. Together, these properties point to a pathway for more effective and safer chemotherapy, with a translational trajectory that could leverage established knowledge of 5-FU.

- •Societal benefits: Potentially fewer side effects, better quality of life, reduced hospital burden and costs; imaging-guided dosing can limit overtreatment—beneficial for resource-constrained settings.
- •**SDG alignment:** SDG 3 (Good Health & Well-Being) via safer, more effective cancer care; SDG 9 (Industry, Innovation & Infrastructure) by advancing smart drug-delivery technologies.
- •Potential applications: Image-guided chemotherapy, combination regimens, and treatment of tumors with high lysosomal activity (e.g., glioblastoma, ovarian).
- •Limitations & next steps: In-vivo PK/PD, toxicity profiling, scale-up and stability, comparative efficacy vs. standard 5-FU regimens, and regulatory pathfinding.

Acknowledgements

A. D. acknowledges the ANRF-J.C. Bose Fellowship and funding through the JBR/2023/000005 grant. A. D. also acknowledges the MoE-STARS research grant (No. 2023-47) for financial support. S. D. acknowledges IISER Kolkata for the Senior Research Fellowship (SRF). S. B. acknowledges the ANRF Postdoctoral Fellowship award (PDF/2023/003483) for financial support. B. J. acknowledges the ANRF-Ramanujan Fellowship (RJF/2022/000127) for support. C. R. P. is thankful to DST, New Delhi (CRG/2022/004594: GAP0985) for financial support for this research. S. T. is grateful to UGC for her Research Fellowship. The authors acknowledge the Central Instrumentation Facility (iCIF) of IISER Kolkata. C. R. P. and S. T. thank the Director, CSIR-IICT (Ms. No. IICT/Pubs./2025/177 dated May 13, 2025) for providing all the required facilities to carry out the work.